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Phase extension from lower to higher resolution by using an upgraded TWIN

variables algorithm [Hountas & Tsoucaris (1995). Acta Cryst. A51, 754±763] in

protein molecules with close to 1000 non-H atoms is presented. Three points of

this procedure are of particular interest. (i) The use of a set of auxiliary variables

providing a satisfactory ®t for many kinds of constraints: the new algorithm

works ef®ciently despite the extreme `dilution' of very limited initial phase

information into a much larger set of auxiliary variables. (ii) The extension of

this auxiliary variables set beyond the resolution of the observed data, which

enhances the phase extension in a so-called `super-resolution' sphere. (iii) The

use of the crystallographic symmetry as a new ®gure of merit and as a reliable

test for the correctness of the phase-extension process allows an ef®cient

screening.

1. Notation and definitions

AMIN: cut-off value for acceptance for each re¯ection based

on the modulus of the calculated E

MPE: mean phase error

Mmod: moduli minimization function

Msf: structure-factor minimization function

S-FOM: crystallographic `symmetry ®gure of merit' ± a

measure of the inconsistency among the calculated phases and

magnitudes for symmetry-related re¯ections

S_MPE: symmetry mean phase error ± mean phase error

among symmetry-related re¯ections

S_Rmod: symmetry mean modulus error

	_S_MPE: 	 symmetry mean phase error.

2. Introduction

An important stage in macromolecular crystallography is that

of phase extension and re®nement when initial phase esti-

mates are available from isomorphous replacement or anom-

alous scattering. On the other hand, it has been shown recently

that direct methods are able to provide ab initio an approxi-

mate or partial solution for small protein structures, with up to

1000 atoms in the asymmetric unit (Smith et al., 1996; Shaefer

et al., 1998). In most cases, it is necessary to extend the phases

either from lower to higher resolution or within the same

resolution range. For phase improvement and extension in

small proteins, several methods have been used, such as direct-

space FFT convolution (Barret & Zwick, 1971), Sayre's

equation (Sayre, 1974), the tangent formula (Blundell et al.,

1981), the maximum determinant rule (de Rango et al., 1985),

the Sayre-equation tangent formula (Woolfson & Yao, 1988)

and others. One of the most successful techniques of phase

extension and re®nement uses density modi®cation (Podjarny

et al., 1987). In its various forms, it applies to the density

constraints such as positivity, atomicity, boundedness, solvent

¯atness, connectivity and non-crystallographic symmetry. A

recent addition to density modi®cation is histogram matching

which imposes the correct density histogram on the map

(Zhang & Main, 1990). Another approach has been developed

on the basis of maximum entropy and likelihood concepts

(Roversi et al., 1998).

The present paper describes further developments of the

twin variable method (Hountas & Tsoucaris, 1995; hereafter

called H±T) including upgrading of the algorithm for protein

phase extension and re®nement. The upgrading comprises (a)

an increase in the size of the molecules from 200 to 1000

independent non-H atoms and (b) achievement of consider-

able extension in the resolution of the phases determined by

the present algorithm, for instance from initial given phases at

3.5 AÊ to ®nal phases at 1.2 AÊ .

Two novelties are particularly relevant in the context of

direct methods, respectively, in steps (a) and (b) of the algor-

ithm (Fig. 1), as follows.

(i) The use from the very beginning of a very large set of

auxiliary variables de®ned on reciprocal-lattice vectors that

can now be located beyond the limiting resolution of the

observed structure factors. Despite the extreme dilution of

very limited initial phase information into this large set of

auxiliary variables, the algorithm allows phase re®nement and
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phase extension both within the observed reciprocal sphere

and the so-called super-resolution shell.

(ii) The use of the crystallographic symmetry as a new ®gure

of merit (S-FOM) and as a reliable test for the correctness of

the phase-extension process. One of the most serious

problems in the application of direct methods for large

structures is to ®nd a reliable ®gure of merit. The introduction

of S-FOM consists of testing the phase-extension and re®ne-

ment algorithm by deliberately sacri®cing the space-group

symmetry in the starting set, then using its re-appearance as a

criterion for correctness.

Preliminary results have been given in two communications

(Tsoucaris et al., 1996; Bethanis et al., 1997).

3. Upgrading the TWIN algorithm

The twin variable concept consists of the use of a set of

auxiliary complex variables 	K associated with reciprocal-

lattice vectors K. The 	 set is related to the normalized

structure factors (s.f.) by means of the following equations:

EH �
P
K

	K�	KÿH�� FT
() ��r� �  �r��� ��2; �1�

	K �
P
H

EH	KÿH: �2�

Equation (2) is the so-called regression equation of standard

probability theory as shown in H±T. The couple (EH, 	H) are

called twin variables.

The 	 variables alone control the whole procedure; they are

allowed to change both in modulus and in phase (or real and

imaginary parts) throughout the procedure. For instance, we

write here explicitly one of the constraint functions considered

in x4 [equation (5) in Fig. 1] to be minimized with respect to

the real and the imaginary parts of all auxiliary variables 	,

Mmod �
P
H

Eobs
H

�� ��ÿ P
K

	K�	KÿH��
���� ����� �2

:

These optimal values of 	 will then be introduced into (1) in

order to obtain the phases of E.

An important feature of the TWIN algorithm is the essence

of the ®tting process exempli®ed in the above constraint. This

®tting stems from the de®ning equation (1) and therefore it

can be achieved with any desired accuracy. In practice, this

accuracy should be somewhat better than the expected error

on jEobs
H j. Thus, the algorithm aims at determining the phases

of E through a very large 	 set, by satisfying a battery of

constraints, though `remaining' in the subspace of 	 that ful®ls

the above constraint with the desired accuracy. Note that Mmod

can be readily reduced to practically zero but this clearly has

no physical meaning and no practical use. This fact, however,

greatly emphasizes how easy it is to construct (even positive)

density functions whose Fourier coef®cients have the same

moduli as a given set of Eobs. This important remark calls for

research into new criteria to help in discriminating the

`correct' solution; such a criterion will be presented in x6.

We summarize below the three steps of the TWIN algorithm

(Fig. 1). We will illustrate the description using data from row

3 in Table 2. The initial input comprises the following.

(i) The whole set of 9772 unique observed moduli larger

than a cut-off value Emin = 1.22 at resolution 1.0 AÊ .

(ii) A small subset of 268 unique (symmetry-independent)

initially phased EH at resolution 3.6 AÊ .

An important feature of the algorithm is the use from the

very beginning of a very large auxiliary 	 set (20584 in the

present calculations). In most of the present work, the Miller

indices of the 	 set are taken to be identical to those of the

observed E. However, in a preliminary attempt to achieve a

so-called `super-resolution', the 	 set is extended beyond the

resolution of the observed E (x5).

It is important to emphasize that the complex 	 variables

are not restricted to satisfy either the Friedel law or the

crystallographic space-group symmetry. However, in the

present calculations, 	 do satisfy the Friedel condition but not

the symmetry conditions. Note that the latter enabled us to

develop a new test based on symmetry (see x6). Thus, for a 	
set with indices identical to these of the observed E (P21

structure with 10292 unique E), we have now 20584 	 to be

Figure 1
Flow chart of the TWIN algorithm.



used as independent auxiliary variables. Their initial values

have been chosen as follows.

(i) For a small subset of 268 	, and the 232 	 symmetry-

related by the 21 axis, we set their values equal to the values of

the corresponding initially phased E (i.e. same indices, moduli

and phases). However, this number of initially phased 	 is not

critical, unlike the number of initially phased E, and we have

shown that the ®nal results are only slightly impaired when

this number is reduced to only 50.

(ii) For the remaining large subset of 	 (i.e. 20084 in the

typical example), we introduce arbitrary values in modulus

and phase. For the initial phases, we use the MS random-

number generation subroutine. For the initial moduli, the

same subroutine could be used but in the present paper we

simply set all moduli |	K| to an arbitrary value of 1.5.

The algorithm comprises three steps.

(a) Preliminary transfer of phase information from the

initially phased E set to the 	 set. The initially phased E set is to

be introduced into (2) and in the following minimization

function where it is kept constant throughout this step,

Msf �
P
H

EH ÿ
P
K

	K�	KÿH��
���� ����2: �3�

The ®rst substep is the calculation of the whole set of 20584 	
by using the regression equation (2). Then the values of all 	
are varied (in modulus and phase) so that their ®nal values

minimize the function Msf by a steepest descent algorithm.

Thus, the initial phase information contained in the unique 268

E is now capitalized into the much larger 	 set (20584 	). It is

important to emphasize the `extreme dilution' of the initial

limited phase information into the large set of the auxiliary

variables 	. This dilution is particularly striking in its lack of

ful®llment of the space-group symmetry constraints (x6).

(b) Stepwise phase extension by transfer of information from

the 	 set to the E set. New tests for accepting calculated phases

of E. The 	 as determined in step (a) are introduced into (1) in

order to determine the phases of new E (so-called extended

phases). We achieve thus an inverse transfer of information,

i.e. from the whole auxiliary 	 set to unphased E. Thus, the

initial phase information is now meaningfully transmitted

through steps (a) and (b) into the phases of new E, i.e. beyond

the initial known set. However, among the new E, very few are

accepted in the subsequent iterative calculations, especially in

the ®rst iterations. Indeed, at this point it is very important to

detect the most reliably phased E which will be in turn

introduced, along with the 268 initially phased E, into step (c).

This is achieved through selection tests, such as the classical

cut-off based on the modulus of the calculated E (AMIN test)

and the new S-FOM related to symmetry (x6). We have

thoroughly examined an optimal dependence of the AMIN

cut-off value on the sequence number in the iteration process.

This is a critical test especially in the ®rst iterations. Thus, the

AMIN value is varied gradually over 200 iterations from 1.8 to

0.8 (scale of normalized E) and a precise optimal AMIN/

iteration table has been established. Fig. 2 shows the increase

of the number of `accepted' extended phases and the parallel

decrease of MPE as a function of the AMIN value, itself

determined by the iteration number. A similar technique

could be used for the acceptance of contributors 	K(	KÿH)�

in the convolution equation (1), depending here on the cut-off

value of TMIN = |(EH)�	K(	KÿH)�|.
(c) Phase re®nement via a set of minimization functions of

	. The values of the 	 set are further varied so as to satisfy

various constraints. This step comprises two parts.

(i) The regression equation. The phase extension and

re®nement procedure is greatly accelerated by using the

regression equation (2) as a preliminary substep to the

subsequent least-squares procedure. This equation directly

generates modi®ed values of 	K as a function of the actual

values of phased E and actual values of all other 	. It is to be

noted that equation (2) is an approximation to the determi-

nantal equation given by equation (1.5) in H±T. One can

expect that the use of the complete determinantal equation

will further improve the results.

(ii) The global minimization function. The 	 set is ®nally

varied so as to best satisfy the minimum condition of the

global function,

Mglobal � Msf �Mmod � : : :: �4�

This function represents all constraints we wish to apply and,

of course, includes Msf and Mmod,

Mmod �
P
H

jEHj ÿ jEobs
H j

ÿ �2
: �5�

Moreover, we have provided optimization schemes for

combining the two main mathematical tools: (i) the regression

equation for storing the new information into the 	 set and

(ii) the least-squares process for a sum of explicit minimization

functions. In the present calculations the programme has

performed one regression cycle followed by nine least-squares

cycles.
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Figure 2
The value of AMIN (scale of normalized E) as a cut-off test for
acceptance of new phases is determined by the iteration cycle. The large
value of AMIN at the beginning is justi®ed by the particular necessity for
small phase errors at the early stages. The ®gure has been plotted with
values that correspond to row 7 of Table 2.
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In addition, other a priori information can be included such

as known solvent regions. A remarkable fact is that such a

constraint in direct space can also be controlled by the 	 set.

This is achieved by minimizing the square of the electron

density in the solvent region. It is to be noted that in H±T the

minimization pertained to the � function, constrained to be

non-negative by equation (4.14) of H±T

Msolv �
R

solvent

��r� dv: �6�

In our present work, it has been shown that minimizing the

following function is more ef®cient:

Msolv �
R

solvent

��r� ÿ ��solvent�r�
� �2

dv; �6a�

where ��solvent�r� is the average density in the solvent region.

Other minimization functions have been the object of

preliminary tests but they are not included in the present

applications [non-observed re¯ections, negative quartets, the

Cochran integral of �3, mixed triplets from equation (4.5) of

H±T].

The TWIN algorithm will proceed by iterating steps (b) and

(c) until the complete set of re¯ections is phased.

4. Phase refinement and extension from low to high
resolution in protein structures

The ®rst step was to examine if the set of above equations (1)±

(5) are valid for larger structures and for resolutions consid-

erably lower than the atomic resolution. To achieve these

goals, the TWIN algorithm has been upgraded and adapted to

protein structures.

We have used both real and simulated data (`ideal', i.e. error

free) for three small proteins (Table 1). For brevity, we use the

following notations: ideal/ideal ± moduli and phases calculated

from re®ned atomic coordinates; real/ideal ± observed E

moduli obtained by subroutine NORMAL of program

MULTAN88 (Debaerdemaeker et al., 1988) and calculated

phases; real/real ± observed moduli and phases corrupted by

imposition of random errors, generated by a wavy function, on

the true values.

For the sake of detailed comparisons, we have taken prac-

tically the same number of �260 initially phased E in all

present calculations. This small number is very interesting in

the frame of minimum information towards ab initio deter-

mination. The following points arise from the results shown in

Table 2.

(i) In all ideal/ideal calculations, except that of no. 9, the

®nal MPE (10±24�) is considered as satisfactory. However, by

applying the super-resolution procedure for no. 9, the ®nal

MPE is again satisfactory. Outputs nos. 1, 2 and 3 show that the

®nal MPE is roughly the same for a resolution range 2.5±3.6 AÊ .

(ii) For real/ideal calculations, we have two satisfactory

outputs, nos. 4 and 6, whereas MPE is 78� for no. 11, at 1.9 AÊ

resolution. Here again, the super-resolution procedure is

likely to be ef®cient. The electron-density maps, generated

using program O (Jones & Kjeldgaard, 1995), relative to the

residues A33±A37 for no. 6 con®rm that all atoms are

correctly resolved after extension (Fig. 3).

(iii) For real/real calculations (nos. 5, 7 and 8), the MPE

critically increases to 50±60� for an initial average error above

�20�. However, it is important to note that this critical value is

related to the very small number of initially phased re¯ections

(�250 re¯ections for �1000 atoms) and that this work aimed

at pushing the method to its extreme limit of initial phase

information.

All results listed in Table 2 are considered as test cases for

the present upgraded algorithm. However, current calcula-

tions, not reported here, have shown that the acceptable initial

error considerably increases by increasing the number of

phased re¯ections. This opens up the possibility of applying

the algorithm in cases where a larger initial set of E is

approximately phased with multiple isomorphous replace-

ment (MIR) or anomalous dispersion.

5. Super-resolution calculations

`Super-resolution' is a term used to describe the fact that

maximum-entropy methods can yield functions of resolution

higher than that which corresponds to the band limits of the

observed data (Collins, 1982). The fundamental equation (1)

provides a very simple way to calculate phases beyond the

observed data resolution.

The super-resolution effect can be better seen in compari-

son with the less good result of phase extension in calculation

no. 9 of Table 2. It is to be noted that the resolution of the

observed moduli is lower for nos. 9±11 than for all others.

Table 1
Names and chemical, unit-cell and symmetry data for protein structures.

Structure Full name Unit cell (AÊ , �)
Space
group

No. of atoms
in asymmetric
unit cell References

Rnase Ap1 Ribonuclease Ap1 of
Aspergillus pallidus

a = 32.01, b = 49.76, c = 30.67,
� = 90.0, � = 115.83,  = 90.0

P21 890 Bezborodova et al. (1988)

1BKR Calponin homology (ch) domain
from human beta-spectrin

a = 31.65, b = 53.95, c = 32.35,
� = 90.0, � = 105.48,  = 90.0

P21 1095 Banuelos et al. (1998)²

1TMY Chey from Thermotoga
maritima

a = 32.04, b = 53.95, c = 34.16,
� = 90.0, � = 95.56,  = 90.0

P21 928 Usher et al. (1997)²

² Data were retrieved from the Protein Data Bank.



In a new ideal/ideal-type calculation, we have kept all initial

data (phased E at 3.0 AÊ and observed moduli at 2.0 AÊ ) iden-

tical to these of no. 9 but, unlike all previous calculations, we

have used from the very beginning a 	 set extended beyond

the resolution of the observed E set, down to 1.5 AÊ resolution.

Then we have allowed the additional calculation by equation

(1) of E also down to 1.5 AÊ resolution. These additional E

(with calculated moduli and phases) are in turn introduced

into all subsequent calculations, provided, of course, that they

pass successfully the same tests as the observed E (AMIN).

The electron-density maps relative to the residues 99±101 for

no. 10 con®rm that many atoms are now almost resolved

(Fig. 4).

A striking result is that not only are these `super-resolution'

E now correctly phased (MPE of 25�), but all other E are

shifted as well towards the correct values, as shown in Table 3.

This emphasizes the paramount importance of the choice of

the auxiliary variables that can be set independently of the

resolution of the observed E: choosing 	 in a resolution range

higher than that of the observed E is already a signi®cant

preparative step towards phasing of E in a super-resolution

range.

6. The crystallographic symmetry test

An important feature of the TWIN algorithm is the decoupling

between the E, bearing the observed EH moduli information,

and the auxiliary variables 	 which alone control the phasing

procedure. This feature enabled us to develop a new FOM for

each re¯ection and a new overall evaluation test based on

crystallographic symmetry. The test consists of the symmetry

mean phase error, S_MPE, and the symmetry mean modulus

error, S_Rmod, which are a measure of the inconsistency

between the calculated phases and magnitudes by equation (1)

for symmetry-related re¯ections. In space group P21, we have

S MPE �P
H

'H ÿ 'RH � k�
�� ��; �7a�

S Rmod �
P
H

ERH

�� ��ÿ EH

�� ��� �.P
H

EH

�� ��; �7b�

where 'RH = 'H ÿ k�, k is the Miller index of the re¯ection,

H = (hkl) and RH is the symmetry-equivalent re¯ection 21.

The 	 are not restricted by theory to obey the symmetry

constraints and, therefore, the E calculated by equation (1) in

step (b) are not symmetry restricted either. Thus, the decrease
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Figure 3
Electron-density maps of residues A33±A37 of protein 1BKR. Maps are
contoured at 2.0�. (a) Map plotted by the initial phased set at resolution
2.5 AÊ . (b) Map plotted by the extended phased set at resolution 1.1 AÊ

(Table 2, no. 6).

Table 2
Summary of the results of phase extension from low to high resolution including the symmetry test.

In all calculations, the resolution of the extended set (columns noted Ext. set) is identical to that of the observed |E |, except for no. 10 pertaining to the super-
resolution phase extension from 2 AÊ (observed moduli) to 1.5 AÊ . Symmetry MPE and R-factor calculations have not been performed for nos. 2 and 3.

Resolution (AÊ ) No. of re¯ections MPE (�)
Rmod

factor S_MPE
S_Rmod

factor

Data set
Kind of
data

Initial
phased
set Ext. set

Initial
phased
set Ext. set No. of 	's

Initial
phased
set Ext. set Ext. set Ext. set Ext. set

1 Rnase Ap1 Ideal/ideal 2.5 1.0 268 4096 9257 0 15 7 1 1.1
2 Ideal/ideal 3.0 1.0 268 5833 11 880 0 13 8 ± ±
3 Ideal/ideal 3.6 1.0 268 9772 20 584 0 10 10 ± ±
4 Real/ideal 2.5 1.17 268 4455 12 842 0 36 11 12 15.6
5 Real/real 2.5 1.17 268 4426 12842 21 60 11 63 39.3
6 1BKR Real/ideal 2.5 1.1 262 5841 12 184 0 25 11 3 5.1
7 Real/real 2.5 1.1 262 5749 12 184 17 26 11 6 7.6
8 Real/real 2.5 1.1 262 5598 12 184 21 51 12 56 35.8
9 1TMY Ideal/ideal 3.0 2.0 262 2426 7737 0 61 13 37 31.9

10 Ideal/ideal 3.0 2.0/1.5 262 3653 9143 0 24 12 9 11.2
11 Real/ideal 2.5 1.9 262 2704 8960 0 78 12 60 37.8
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of S_MPE and S_Rmod throughout the iterations is likely to

re¯ect the correctness of the phasing procedure at each

iteration.

A particularly striking situation occurs at the end of the

preliminary step (a), before the ®rst iteration of step (b): this

could be termed as an extreme dilution of the symmetry

information contained in the initial known set. This dilution

results in a very weak degree of ful®lment of the space-group-

symmetry relations for the 	 set. This can be quantitatively

evaluated by computing the S_MPE pertaining to the 	 set.

For instance, in set no. 1 of Table 2, the S_MPE before step (b)

for the 9257 	 is 87�, that is indeed very close to the random

value of 90�.
The algorithm subsequently generates E which are

progressively endowed with values closer to the correct symmetry relations for both moduli and phases. Therefore,

both S_MPE and S_Rmod can now be used as a FOM for

acceptance for each re¯ection issued throughout the iterations

in step (b), as well as a test for the success of the whole

algorithm. The last columns of Table 2 show the ®nal values of

S_MPE and of S_Rmod. It appears that their values provide an

indication for the correctness of the phase-determination

process. Note that these are preliminary results and it can be

expected that further work will improve the reliability of the

test. From the present results, we can, however, consider that

an S_MPE of 40� is a tentative cut-off value for acceptance of

a solution in a multisolution procedure. Fig. 5 provides a

detailed description of the variation of several `symmetry

indicators' during the phase extension process. The informa-

tion provided by S_MPE can be extended by that from

	_S_MPE,

	 S MPE �P
K

!K ÿ !RK � k�
�� ��; �8�

where !K is the phase of 	K. The curve is smoother on

account of the very large number of contributors in (8) from

the very beginning, as compared with that of (7a).

As a ®nal remark, it could be considered that the symmetry

information would be more useful if it were fed into the

algorithm from the very beginning and, subsequently, strictly

obeyed for E throughout the procedure, i.e. by setting and

keeping 	 so as to always obey the symmetry relations.

Figure 5
Variation of several `symmetry indicators' during the phase extension
process for set no. 1 of Table 2.

Figure 4
Electron density maps of residues 99±101 of protein 1TMY. Maps are
contoured at 2.3�. (a) Map plotted by the initial phased set at resolution
3.0 AÊ . (b) Map plotted by the extended phased set at resolution 2.0 AÊ . (c)
Map plotted by the `super-resolution' extended set at 1.5 AÊ resolution
(Table 2, no. 10).

Table 3
Analysis of the ®nal results on phase extension for protein 1TMY
including super-resolution: number of phases determined by the present
algorithm and corresponding MPE.

The initial known set consists of 262 phases at 3.0 AÊ resolution. 2118 moduli
are used at 2.0 AÊ resolution. Super-resolution concerns the 2.0 < d < 1.5 AÊ

shell where no observed moduli are used. 9143 	 at 1.5 AÊ resolution have
been used throughout the calculations, of which 4932 are located outside the
observed sphere.

Resolution (AÊ ) No. of extended E's MPE of extended set (�)

d > 3.0 410 15.0
3.0 � d < 2.0 1154 21.5
2.0 � d < 1.5 2089 25.6



However, the symmetry tests appear to be very useful for the

evaluation of the correctness of the phasing process (espe-

cially for a multisolution algorithm), and this new criterion in

direct methods probably produces a hypothetical extra power

provided by constraining the symmetry of 	. It is important to

emphasize that the classical R factor is not a good indicator, as

shown in x3. The sigmoid variation of 	_S_MPE con®rms the

cut-off value of approximately 40� deduced from Table 2.

7. Towards ab initio phase determination: multisolution
algorithms

First we have examined the effect of the progressive decrease

of the number of initially phased E for protein structures and

have found that 200±270 initially phased E seem to represent

the minimal initial information necessary for phase extension

by the present algorithm for structures containing close to

1000 atoms. Further improvements are necessary for a

reduction of the ratio `number of known phases/number of

atoms' beyond the above range of about 1/3 to 1/4. Such

improvements could be provided by the use of a multisolution

procedure.

7.1. Ab initio calculations for small structures

The multisolution approach in modern direct methods has

been proved very successful in solving crystal structures. Thus,

we tested the multiple generation of random starting sets of 	
auxiliary variables and their subsequent treatment by the

TWIN algorithm. For these test calculations, we have used

ideal E for a structure with 41 atoms in P1 (Psicharis, Ment-

zafos & Terzis, unpublished data; see also H±T). The experi-

ments have shown that 150 random starts were able to

produce several acceptable solutions with an unweighted

MPE in the range 25±35� for 150±200 E. The results are

summarized in Table 4 showing the lowest MPEs and corre-

sponding numbers of E for the best sets out of 150 random

trials. It should be noted that the inclusion of the Mquart

function (see H±T) into the minimization procedure further

improves the results. Note that for the other starting sets the

MPE is considerably higher and the number of phased E is

smaller than the corresponding values of the above table.
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Table 4
Selection of the best re®ned phase sets for 150 random 	 sets for a 41
non-H atom structure (notations and data for the structure are given in
H±T).

Minimization functions

Mmod Mmixed triplets Mmod Mmixed triplets Mquart

Random set no. No. of E's MPE (�) No. of E's MPE (�)

1 126 19 173 31
187 35 261 34

224 35
37 151 27 193 26

178 30 210 27
266 36


